An Unusual Elimination of NH₃ from Cobalt-Bound Alkylamine Dimer Ions

Lin-Zhi Chen and Jack M. Miller*

Department of Chemistry, Brock University, St. Catharines, Ontario, Canada L2S 3A1

Received March 25, 1992

Reactions of naked or ligated transition-metal ions with ammonia and organic amines have been investigated for several years.¹ Earlier studies of the metal ions with primary amines, in particular CH₃CH₂NH₂,² demonstrated some reactions such as dehydrogenation, demethanation, hydride abstraction, and loss of other hydrocarbon neutrals.³ The relative extent of these reactions depends on both the metal ions and the amines. Moreover, Fe⁺ was found to be the only first-row transitionmetal ion that inserted into the C-N bond of n-C₃H₇NH₂.^{3c} The observed reactivity was described in terms of promotion energies required to achieve a configuration conducive to the formation of two σ -bonds. Recent studies employing ²H-labeled propylamines suggested that a remote functionalization was involved in the elimination of H_2 for Fe⁺ and Co⁺ and of C_2H_4 for Ni⁺ and Co^{+,4} In contrast, for Fe⁺, the α - and β -methylene groups are completely equilibrated via an ethylene complex before C_2H_4 and probably C_3H_6 as well as NH_3 are formed. Parallel results were observed for some other alkylamines.

In our recent study of relative metal cation-nitrile⁵ and metal cation-alkylamine⁶ bond energies using Cooks' kinetic method,⁷ we found an intense loss of NH₃ from the cobalt-bound alkylamine dimer ions. This is surprising because the corresponding alkylamine-Co⁺ complexes and nickel-bound alkylamine dimer ions do not yield NH₃.²⁻⁴ We report the following results from our preliminary studies.

Experiments were done with a Kratos Concept IS doublefocusing mass spectrometer of E/B configuration. The instrument was controlled by a Kratos DS 90 Data General Eclipse based computer system. A Kratos Mach3 data system running on a SUN SPARCstation was used for further data workup. The original FAB source was modified with a small hole to accept the ligand vapor from a heated reservoir probe inserted via the EI/ CI probe lock.⁸ The instrument was fitted with an Ion Tech saddle field atom gun, and xenon was used as the fast-atom source. The fast atom-beam energy was 8 keV with a density corresponding to an emission current of about 1 mA. The source was operated at a temperature of 25 °C, a pressure of about 10⁻⁵ Torr, and an accelerating voltage of 6 kV. A resolving power of 1000 was used for recording normal mass spectra. Naked metal

ions were generated by sputtering from the solid salts FeSO₄·7H₂O, CoCl₂·6H₂O, and NiCl₂·6H₂O, which had been deposited by evaporation onto the FAB probe tip. A $3-\mu L$ sample of the liquid reagent was typically injected into the reservoir probe. Complexation of naked metal ions and Co+Cl with the amines yielded monoadducts, RNH_2-M^+ (R = alkyl; M = Ni, Co) and RNH_2- Co⁺Cl, metal-bound dimer ions, (RNH₂)₂M⁺, and three-ligand complexes, (RNH₂)₂Co⁺Cl. Unsymmetrical metal-bound dimer ions, RNH₂-M⁺-R'NH₂ and RNH₂-M⁺-NCR', were formed by simultaneously introducing the two different amines RNH₂ and R'NH₂ or R'CN. Metastable ion (MI) fragmentations in the first field-free region behind the source slit were monitored by B/E-linked scans.

For the sake of simplicity and clarity, we will first consider a less complicated (C2H5NH2)2Co+ complex and the corresponding monoadduct, C₂H₅NH₂-Co⁺. Metastable dissociation of $C_2H_5NH_2$ -Co⁺ (m/z 104) produces the neutrals H₂ (corresponding ionic fragment at m/z 102), C₂H₄ (ion at m/z 76), and CoH (ion at m/z 44) (Figure 1a). The results are somewhat different from those of an ICR study where Radecki and Allison observed the loss of CH₄ instead of C_2H_4 using EI at 70 eV.² Both the CH_4 and the C_2H_4 losses are estimated to be exothermic.² The absence of the C₂H₄ loss led Radecki and Allison to suggest that the Co^+-NH_2 bond energy of the $C_2H_5-Co^+-NH_2$ intermediate was less than 18.7 kcal/mol.² However, it was recently reported that the Co⁺-NH₂ bond energy is as high as about 62 kcal/mol,⁹ indicating the formation of the intermediate for the C₂H₄ loss is also exothermic. We are thus not surprised to observe the C_2H_4 loss. Similarly, Schwarz and co-workers⁴ could not observe the CH₄ loss from *n*-C₃H₇NH₂-Fe⁺, using a sector spectrometer, while Fe⁺ reacting with n-C₃H₇NH₂ in ICR instruments generated CH₄.³ The reason for the difference between the results from this work and those of Radecki and Allison is not clear at this time. One can suggest that different methods used in the studies account for the differences in reactions. Despite the differences, however, the loss of NH₃ has not been observed, in either case, from C₂H₅NH₂-Co⁺. We also synthesized other alkylamine- Co^+ complexes (see below) and could not observe the NH_3 loss. In fact, previous studies show that only $n-C_3H_7NH_2-Fe^+$ affords NH₃ but it is not found for any other alkylamine-M⁺ complexes.²⁻⁴ In sharp contrast to that of $C_2H_5NH_2$ -Co⁺, the MI spectrum of $(C_2H_5NH_2)_2C_0^+$ (m/z 149) demonstrates two reactions, elimination of 17 amu, yielding an ion at m/z 132, and C₂H₅NH₂ (ion at m/z 104) (Figure 1b). Due to the weak bonding of C₂H₅NH₂ to Co⁺, $(C_2H_5NH_2)_2Co^+$ prefers to lose one $C_2H_5NH_2$ ligand. Most interesting is the unusual loss of 17 amu that corresponds to an intensity of 33% relative to the sum of all fragmentations.

In order to identify this neutral species of 17 amu, D-labeled $i-C_3H_7ND_2$ and $i-C_3D_7NH_2$ were employed as ligands. Under the MI conditions, shifts of 17 amu to 19 amu and to 18 amu are observed for (i-C₃H₇ND₂)₂Co⁺ and (i-C₃D₇NH₂)₂Co⁺, respectively. We thus conclude that 17 amu corresponds to NH₃, which is formed by addition to the NH₂ group of a hydrogen from either of the two ligand molecules.

^{*} To whom correspondence should be addressed

^{(1) (}a) Eller, K.; Schwarz, H. Chem. Rev. 1991, 91, 1121. (b) Allison, J. Prog. Inorg. Chem. 1986, 34, 627

Radecki, B. D.; Allison, J. J. Am. Chem. Soc. 1984, 106, 946

⁽a) Tolbert, M. A.; Beauchamp, J. L. J. Phys. Chem. 1986, 90, 5015. b) Buckner, S. W.; Gord, J. R.; Freiser, B. S. J. Chem. Phys. 1988, 88, 3678. (c) Babinec, S. J.; Allison, J. J. Am. Chem. Soc. 1984, 106, 7718.

^{(4) (}a) Karrass, S.; Prusse, T.; Eller, K.; Schwarz, H. J. Am. Chem. Soc. 1989, 111, 9018. (b) Karrass, S.; Eller, K.; Schwarz, H. Chem. Ber. 1990, 123, 939. (c) Karrass, S.; Eller, K.; Schulze, C.; Schwarz, H. Angew. Chem., Int. Ed. Engl. 1989, 28, 607. (d) Karrass, S.; Schwarz, H. Helv. Chim. Acta 1989, 72, 638. (e) Karrass, S.; Schwarz, H. Or-H. Helv. Chim. Acta 1989, 72, 638. (e) Karrass, S.; Schwarz, H. Or-ganometallics 1990, 9, 2034. Chen, L. Z.; Miller, J. M., Org. Mass Spectrom., in press. Chen, L. Z.; Miller, J. M. J. Organomet. Chem., in press. (a) Cooks, R. G.; Kruger, T. L. J. Am. Chem. Soc. 1977, 99, 1279. (b)

McLuckey, S. A.; Gameron, D.; Cooks, R. G. J. Am. Chem. Soc. 1981, 103, 1313. (c) McLuckey, S. A.; Schoen, A. E.; Cooks, R. G. J. Am. Chem. Soc. 1982, 104, 848. (d) Chen, L. Z.; Flammang, R.; Maquestiau, A.; Taft, R. W.; Catalan, J.; Cabildo, P.; Claramunt, R.; Elguero, J. J. Org. Chem. 1991, 56, 179. (c) Majumdar, T. K.; Clairet, ; Tabet, J.-C.; Cooks, R. G. J. Am. Chem. Soc. 1992, 114 . 2897

⁽⁸⁾ Chen, L. Z.; Miller, J. M. J. Am. Soc. Mass Spectrom. 1991, 2, 120.

⁽a) Clemmer, D. E.; Armentrout, P. B. J. Am. Chem. Soc. 1989, 111, (9) 8280. (b) Clemmer, D. E.; Armentrout, P. B. J. Phys. Chem. 1991, 95, 3084. (c) Buckner, S. W.; Freiser, B. S. J. Am. Chem. Soc. 1989, 107, 4715.

Figure 1. MI spectra of $C_2H_5NH_2$ -Co⁺ at m/z 104 (a) and (C_2H_5 - $NH_2)_2Co^+$ at m/z 149 (b).

Table I. Loss of NH3 from Metastable Two- and Three-Ligand Complexes of Co⁺

R	R′	loss of NH3ª	R	R′	loss of NH3ª
(RNH ₂)(R'NH ₂)Co ⁺					
н	н	<i>b</i>	<i>n</i> -C ₃ H ₇	s-C₄H9	20
Н	CH3	Ь	$n-C_3H_7$	<i>n</i> -C ₅ H ₁₁	16 ^{c,d}
CH ₃	CH ₃	е	i-C ₃ H ₇	i-C₄H9	33°
CH ₃	C ₂ H ₅	18	<i>i</i> -C ₃ H ₇	s-C₄H9	29°
CH ₃	$n-C_3H_7$	20	i-C ₃ H ₇	$n-C_5H_{11}$	18 ^{c,d}
C ₂ H ₅	C ₂ H ₅	33	n-C ₄ H ₉	n-C₄H9	29°
C_2H_5	$n-C_3H_7$	17	n-C ₄ H ₉	$n-C_5H_{11}$	19 ^{c,d}
C_2H_5	i-C ₃ H ₇	27	i-C4H9	<i>n</i> -C ₅ H ₁₁	16 ^{c,d}
$n-C_3H_7$	$n-C_3H_7$	27	i-C ₄ H ₉	n-C ₆ H ₁₃	6 ^{c,d}
$n-C_3H_7$	n-C4H9	34	$c - C_6 H_{11}$	n-C ₆ H ₁₃	10 ^{c,d}
n-C ₃ H ₇	i-C ₄ H ₉	30			
(RNH ₂)(R'CN)Co ⁺					
C ₂ H ₅	C ₂ H ₅	<u>40</u>	i-C ₃ H ₇	$n-C_3H_7$	25
C ₂ H ₅	n-C ₃ H ₇	29	i-C ₃ H ₇	i-C ₃ H ₇	28

^a Data given as the intensities of NH₃ in percent of the sum of ligand molecules and NH₃. ^b NH₃ loss is observed, but it is due to a direct ligand detachment. ^c The complexes also afford H₂ loss. ^d The complexes also afford minor alkene loss. • No NH₃ is observed.

For the purpose of comparison, analogous $(C_2H_5NH_2)_2Ni^+$ and $(C_2H_5NH_2)_2Fe^+$ ions were investigated. Although low intensities of $(C_2H_5NH_2)_2Fe^+$ precluded further studies, the MI spectrum of $(C_2H_5NH_2)_2Ni^+$ was readily recorded. Surprisingly, the reactions of $(C_2H_5NH_2)_2Ni^+$ are exclusively due to detachment of one $C_2H_5NH_2$. This implies that NH_3 loss is the specific reaction for $(C_2H_5NH_2)_2Co^+$. To extend this specificity, other two- and three-ligand complexes of Co⁺ and Ni⁺ have also been studied. These complexes consist of four systems, (RNH₂)- $(R'NH_2)M^+$, $(RNH_2)(R'CN)M^+$, $(RNH_2)(R'NH_2)Co^+Cl$, and $(RCN)(R'CN)M^+$ (Table I). The experiments provide the following results. (i) For all the systems containing Ni⁺ (R \neq H), no NH₃ loss is observed. These complexes exclusively undergo detachment of one ligand, except for some (RNH₂)(R'NH₂)Ni⁺ ions consisting of longer-chain amines, such as n-C₆H₁₃NH₂, which also eliminate H₂. This "unreactivity" permits the application of Cooks' kinetic method for measuring the relative ligand-Ni⁺ bond dissociation energies. (ii) Except for $(CH_3NH_2)_2Co^+$, where only the detachment of CH_3NH_2 occurs, all of the other (RNH_2)-(R'NH₂)Co⁺ dimer ions undergo NH₃ loss. Intensities of about 30% for the NH₃ loss relative to the sum of NH₃ and ligand loss are found for the symmetrical (RNH₂)₂Co⁺ systems and of 15-30% for most of the unsymmetrical (RNH₂)(R'NH₂)Co⁺ ions. In addition, some less important fragmentations such as H₂ loss are also observed for larger alkylamines. Note that the NH_3 loss from $(NH_3)_2M^+$ as well as $(NH_3)(CH_3NH_2)M^+$ $(M = Ni^+, Co^+)$

Scheme I. MI Dissociations of the (i-C₃D₇NH₂)(i-C₃H₇ND₂)Co⁺ Complex Ion^a

^a The intensities of the products are given relative to that of $i-C_3D_7$ -NHD-Co+.

seems to be a direct ligand detachment and does not involve hydrogen migration. (iii) Similar to (RCN)(R'CN)Ni^{+,10} (RCN)(R'CN)Co⁺ ions solely lose either of the ligands.⁵ However, the mixed (RNH₂)(R'CN)Co⁺ complexes produce NH₃. Thus, not only the alkylamines but also the alkylnitriles as the second ligand introduced into RNH2-Co⁺ lead to the formation of NH₃. (iv) Introduction of a third ligand, Cl, into (RNH₂)(R'NH₂)Co⁺ completely prevents the elimination of NH₃. Instead, the main reactions are detachment of one RNH₂ ligand and, in some cases, the loss of H_2 . However, these reactions are explicable. Since the Co⁺-Cl bond $(70 \pm 3 \text{ kcal/mol}^{11})$ has more covalent properties than the approximately electrostatic Co⁺- NH_2R bond ($D(Co^+-NH_3) = 58.8 \text{ kcal/mol}^{12}$), elimination of RNH_2 occurs most easily than that of Cl.

There are two possibilities that NH₃ is formed by the NH₂ group of one ligand incorporating a hydrogen from either the same or the other ligand. The latter involves a ligand-ligand coupling process.¹³ In attempt to distinguish between these possibilities, we have investigated the metastable dissociations of a D-labeled $(i-C_3D_7NH_2)(i-C_3H_7ND_2)Co^+$ complex ion. If NH₃ originates from the same ligand, only NH₂D and ND₂H will be observed; otherwise, only NH₃ and ND₃ will be observed if NH₃ originates by NH₂ incorporating a hydrogen from a different ligand. Unfortunately, a fast H/D exchange between the two $NH(D)_2$ entities occurs, as indicated by the formation of *i*-C₃D₇-NHD-Co⁺ and i-C₃H₇NHD-Co⁺ ions (Scheme I). Despite this, NH₂D and ND₂H but not NH₃ and ND₃ are produced. The results imply that the amino group and the hydrogen forming ammonia originate from the same ligand. This is further supported by the MI dissociations of D-labeled (i-C₃D₇NH₂)(i- $C_3H_7CN)Co^+$ and $(i-C_3H_7ND_2)(i-C_3H_7CN)Co^+$ ions. The two ions produce NH₂D and ND₂H, respectively, revealing that the ammonia originates from the amine ligand only and does not involve any elements from the RCN ligand. The mechanism for the NH₃ loss is suggested in Scheme II.

This is a general mechanism established for the reactions of transition-metal ions with polar organic compounds.14 The complexed Co⁺ initially inserts into a C-N bond, forming the intermediate 2, followed by a β -H transfer and eventual elimination of NH₃. An isotopic effect of $k_{\rm H}/k_{\rm D}$ = 1.91 is observed for the ammonia loss from the (i-C₃D₇NH₂)(i-C₃H₇NH₂)Co⁺ ion. This mechanism is supported by the fact that the metastable ion 4 formed after the NH₃ loss exclusively generates C_3H_7 - NH_2 -Co⁺ via C₃H₆ loss (step V). Similarly, for the labeled (*i*-

- (12) Peter, J. M.; Squires, R. R. J. Am. Chem. Soc. 1989, 111, 4101.
- (13) Examples for ligand-ligand coupling: (a) Oae, S.; Uchida, Y. Acc. Chem. Res. 1991, 24, 202. (b) Schroder, D.; Sulze, D.; Hrusak, J.; Bohmer, K.; Schwarz, H. Int. J. Mass Spectrom. Ion Processes 1991, 110, 145. (c) Schnabel, P.; Irion, M. P.; Weil, K. G. J. Phys. Chem. 1991, 95, 9694. (d) Hettich, R. L.; Freiser, B. S. Organometallics 1989, 8, 2447. (e) Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1985, 107, 72. (f) Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1983, 105, 7484.
- (a) Allison, J.; Ridge, D. P. J. Am. Chem. Soc. 1976, 98, 7445. (b) Allison, J.; Ridge, D. P. J. Am. Chem. Soc. 1979, 101, 4998. (14)

^{(10) (}a) Chen, L. Z.; Miller, J. M. Org. Mass Spectrom. 1992, 27, 19. (b) Chen, L. Z.; Miller, J. M. Can. J. Chem. 1991, 69, 2002. (c) Chen, L. Z.; Miller, J. M. J. Am. Soc. Spectrom. 1992, 3, 451.
 (11) Fisher, E. R.; Sunderlin, L. S. J. Phys. Chem. 1989, 93, 7375.

 $C_3D_7NH_2$)(*i*- $C_3H_7NH_2$)Co⁺ ion, the analogous ionic product accompanied by NH₂D loss exclusively produces *i*- $C_3H_7NH_2$ -Co⁺ via the loss of C₃D₆, and the ion product of NH₃ loss gives *i*- $C_3D_7NH_2$ -Co⁺ via C₃H₆ loss. Because there is no β -H available for the (CH₃NH₂)₂Co⁺ complex ion, NH₃ loss is not observed.

Since Co^+ -NH₂R bonds are stronger than Co^+ -alkene bonds,¹⁵ complexed ions such as 3 should prefer to lose alkene rather than NH₃. This is opposite to the experimental results, which show that alkene loss is completely absent. However, this unusual case may not be sufficient to negate the proposed mechanism in Scheme II, since a number of examples have been reported

illustrating that the more strongly bound ligand might be preferably eliminated.¹ For instance, when Co⁺ reacts with ethanol, the products are C₂H₄-Co⁺ ($D(C_2H_4-Co^+) = 37$ kcal/ mol¹⁵) and H₂O-Co⁺ ($D(H_2O-Co^+) = 37$ -40 kcal/mol¹⁶), with the former preferred, while only H₂O-CoNO⁺ is observed with CoNO⁺ instead of Co⁺.¹⁷ It has been found that NO is more strongly bound than H₂O to Co⁺ but is more weakly bound than H₂O to CoCO⁺.¹⁸ This is interpreted in terms of antisymbioses.¹⁹ In light of these previous works, our results indicate that alkenes are more weakly bound than NH₃ or RNH₂ to Co⁺ (in ion 4) but are more strongly bound than NH₃ to RNH₂Co⁺ (in ion 3), probably due to ligand-ligand repulsion between ammonia and RNH₂ and increased π -bonding between the alkenes and the metal ions in 3.¹⁸

Acknowledgment. We wish to thank the Natural Sciences and Engineering Research Council of Canada for operating and equipment grants to J.M.M. and T. R. B. Jones for experimental assistance. We are also grateful to the reviewers for helpful suggestions.

- (17) Allison, J.; Ridge, D. P. J. Am. Chem. Soc. 1979, 101, 4998.
- (18) Strobel, F.; Ridge, D. P. Inorg. Chem. 1988, 27, 891.
- (19) Pearson, R. G. Inorg. Chem. 1973, 12, 712.

⁽¹⁵⁾ Although the RNH₂-Co⁺ bond energies are not available, it is found, in general, that D(RNH₂-M⁺) > D(alkene-M⁺). For example, NH₃-Co⁺ (58.8 kcal/mol) > C₂H₄-Co⁺ (37 kcal/mol): Armount, P. B.; Beauchamp, J. L. J. Am. Chem. Soc. 1981, 103, 6628.

^{(16) (}a) Marinelli, P. J.; Squires, R. R. J. Am. Chem. Soc. 1989, 111, 4101.
(b) Magnera, T. F.; David, D. E.; Michl, J. J. Am. Chem. Soc. 1989, 111, 4100.